
Computer Graphics
8.Non Realistic Rendering – Part 1
Dr Joan Llobera – joanllobera@enti.cat
Dr Jesus Ojeda – jesusojeda@enti.cat

mailto:joanllobera@enti.cat
mailto:jesusojeda@enti.cat

Outline

1. The graphics pipeline

2. Toon shaders examples and
exercises

3. How to render the silhouette?

1. Reminder of the graphics pipeline

https://gamedevz.wordpress.com/2016/02/25/outline-toon-
shader/

https://gist.github.com/xDavidLeon

https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading

Analysis of toon shading elements

https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading

Analysis of toon shading elements

• Plain colours, with abrupt
transitions

• Shape outline

https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading

Analysis of toon shading elements

• Plain colours, with abrupt
transitions

• Shape outline (not always black)

• Reflections, if present, are flat

https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading

How to implement it?

• Modify the phong shading
model for main textures and
reflections

• Add “something else” for shape
outline. We will need to discuss
further line rendering

Reminder: The Phong reflection model
• The Phong reflection model (also called Phong illumination or Phong lighting) is

an empirical model of the local illumination of points on a surface

• It describes the way a surface reflects light as a combination of the diffuse
reflectionof rough surfaces with the specular reflection of shiny surfaces

• The model also includes an ambient term to account for the small amount of
light that is scattered about the entire scene.

Phong shading & Toon Shading
• The Phong reflection model is the result of three partial radiance:

• The diffuse reflection, where the reflection occurs to all

directions

• Thespecular reflection,where the reflection only occurs in

the mirror angle

• Theambient light,which represents the indirect light as a

constant

To build Toon Shade from Phong

Shade we want to:

1. Have no specular component

2. Quantify he diffuse component

U = L.N

if U < 0.2 then U = 0

if U >= 0.2 and U < 0.4 then U = 0.2

if U >= 0.4 and U < 0.5 then U = 0.4

if U >=0.5 then U = 1

Review of Fragment Shader
const char* cube_fragShader =

"#version 330\n\

in vec4 vert_Normal;\n\

out vec4 out_Color;\n\

uniform mat4 mv_Mat;\n\

uniform vec4 color;\n\

void main() {\n\

out_Color = vec4(

color.xyz * dot(vert_Normal, mv_Mat*vec4(0.0, 1.0, 0.0, 0.0))

+ color.xyz * 0.3, 1.0);}";

Exercises:

1. Load the 3D character of your delivery one (or a 3D character, if you did not do delivery
one).

2. Modify the existing shader to implement only the diffuse component of the Phong Model
(draw an object to be the light source, make it move)

Steps
1. Set a position of the light source, and paint an object there (for example, the cube primitive)
2. Adapt the default cube shader to take as input the light position and calculate a diffuse lightning from it
3. Move the light source and see how the diffuse shader changes (and it does not change with the camera

movements)

3. Replace the diffuse component with a Toon shader

4. Add the specular component to the shader

5. Modify the shader in order a uniform can control the presence of the specular component

6. Modify the specular component in order to render the reflection as a flat model

7. Make the reflection component apply only to eyes

Line Rendering

Line Rendering

We have:

B: boundary

C: crease

M: material

S: silhouette

Line Rendering – geometry approach

• Move the geometry to get a
shape, then paint it in one flat
colour.
• How do you decide which

geometry you need to move?

• In the drawing on the right, which
lines would be drawn?

Line Rendering – use normals or depth?

• Image 1 shows an example of 3D
model rendered with contour
rendering

• We can look into the change in the
normal direction (see image 2)
• Where do we find the normal of an

image?

• We can look into big variations of
depth (see image 3)
• Where do we find the depth of an

image?

Source: https://prideout.net/blog/old/blog/index.html@p=54.html

https://prideout.net/blog/old/blog/index.html@p=54.html

• What will change in terms of
rendering pipeline, using either
depth or normals?

• What lines of the right figure will be
drawn with either method?

• Can you come up with a different
method that would render some of
the lines in the left that won’t be
drawn with normals nor with depth?

Source: https://prideout.net/blog/old/blog/index.html@p=54.html

Line Rendering – use normals or depth?

https://prideout.net/blog/old/blog/index.html@p=54.html

• What lines of the right figure will be
drawn with either method?

• Can you come up with a different
method that would render some of
the lines in the left that won’t be
drawn with normals nor with depth?

Source: https://prideout.net/blog/old/blog/index.html@p=54.html

Line Rendering – a first implementation

https://prideout.net/blog/old/blog/index.html@p=54.html

• What lines of the right figure will be
drawn with either method?

• Can you come up with a different
method that would render some of
the lines in the left that won’t be
drawn with normals nor with depth?

Source: https://prideout.net/blog/old/blog/index.html@p=54.html

Line Rendering – use normals or depth?

https://prideout.net/blog/old/blog/index.html@p=54.html

Resources

See online references indicated in the previous slides

Also:

• [Kessenich] Kessenich et al. OpenGL Programming Guide. Chapter 7.
Light and Shadow

• [Akenine-Möller] Akenine-Möller et al. Real-Time Rendering. Third
Edition, CRC Press (chapter 11)

• https://learnopengl.com/Lighting/Basic-Lighting

• https://en.wikipedia.org/wiki/Phong_reflection_model

