
Computer Graphics
4. Load a Model, Put Light on it
Dr Joan Llobera – joanllobera@enti.cat

Spring 2019

mailto:joanllobera@enti.cat

Outline

1. Load a Model

2. Introduction to Lightning

3. Theory on Lightning

4. The Phong Lightning Model

1.1 What’s in an OBJ

Blender3D v249 OBJ File: untitled.blend
www.blender3d.org
mtllib cube.mtl
v 1.000000 -1.000000 -1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 -1.000000 -1.000000
v 1.000000 1.000000 -1.000000
v 0.999999 1.000000 1.000001
v -1.000000 1.000000 1.000000
v -1.000000 1.000000 -1.000000
vt 0.748573 0.750412
vt 0.749279 0.501284
vt 0.999110 0.501077
vt 0.999455 0.750380
vt 0.250471 0.500702
vt 0.249682 0.749677
vt 0.001085 0.750380
vt 0.001517 0.499994
vt 0.499422 0.500239
vt 0.500149 0.750166
vt 0.748355 0.998230
vt 0.500193 0.998728
vt 0.498993 0.250415
vt 0.748953 0.250920

vn 0.000000 0.000000 -1.000000
vn -1.000000 -0.000000 -0.000000
vn -0.000000 -0.000000 1.000000
vn -0.000001 0.000000 1.000000
vn 1.000000 -0.000000 0.000000
vn 1.000000 0.000000 0.000001
vn 0.000000 1.000000 -0.000000
vn -0.000000 -1.000000 0.000000
usemtl Material_ray.png
s off
f 5/1/1 1/2/1 4/3/1
f 5/1/1 4/3/1 8/4/1
f 3/5/2 7/6/2 8/7/2
f 3/5/2 8/7/2 4/8/2
f 2/9/3 6/10/3 3/5/3
f 6/10/4 7/6/4 3/5/4
f 1/2/5 5/1/5 2/9/5
f 5/1/6 6/10/6 2/9/6
f 5/1/7 8/11/7 6/10/7
f 8/11/7 7/12/7 6/10/7
f 1/2/8 2/9/8 3/13/8
f 1/2/8 3/13/8 4/14/8

v vertex
Vt texture coordinates
Vn vertex normal
f a face (indexes start at 1, not 0)

1.2 Export from Blender

We are doing a very simplified
drawing, we need a simplified
export

To start, just use the cube made
available online

1.3 Load model in cpp

• In the basic project, create a
new file called load_obj.cpp

• Include the needed headers

• We will be following
http://www.opengl-
tutorial.org/beginners-
tutorials/tutorial-7-model-
loading/

// Include standard headers
#include <stdio.h>
#include <stdlib.h>
#include <vector>

#include <glm\gtc\type_ptr.hpp>
#include <glm\gtc\matrix_transform.hpp>

1.3. Setup

• Preprocessor directives

1.3. Setup

Create load_obj.cpp

Add:
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <glm\gtc\type_ptr.hpp>
#include <glm\gtc\matrix_transform.hpp>

bool loadOBJ(const char * path,
std::vector < glm::vec3 > & out_vertices,
std::vector < glm::vec2 > & out_uvs,
std::vector < glm::vec3 > & out_normals
){

return true;

}

1.3. Setup

//variables to load an object:

std::vector< glm::vec3 > vertices;
std::vector< glm::vec2 > uvs;
std::vector< glm::vec3 > normals;

In render.cpp, within the init function

bool res = loadOBJ("cube.obj",
vertices, uvs, normals);

And put cube.obj where the project file is

The project file: GL_framework.vcxproj

The path of the project file: /code

In render.cpp:
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <glm\gtc\type_ptr.hpp>
#include <glm\gtc\matrix_transform.hpp>

extern bool loadOBJ(const char * path,
std::vector < glm::vec3 > &
out_vertices,
std::vector < glm::vec2 > & out_uvs,
std::vector < glm::vec3 > & out_normals
);

1.4 Load a model

We follow the online tutorial, in
the section “reading the file”

http://www.opengl-
tutorial.org/beginners-
tutorials/tutorial-7-model-
loading/

We don’t target rendering: we
only want to load the model.
Check with debugging that you
are loading the right vertices

1.5 Load your model

Find a (simple) model that you
like, import it and load it in the
C++ program

2. Introduction to model lightning

Basic of basics:

Draw a uniform color

Exercise: draw a cube with a basic
colour shader whose colour
changes with sin(currentTime)

2. Introduction to model lightning

Basic of basics:

Draw a uniform color

Exercise: draw a cube with a basic
colour shader whose colour
changes with sin(currentTime)

const char* cube_vertShader =
"#version 330\n\
in vec3 in_Position;\n\
uniform mat4 mvpMat;\n\
void main() {\n\
gl_Position = mvpMat *
vec4(in_Position, 1.0);\n\
}";
const char* cube_fragShader =
"#version 330\n\
out vec4 out_Color;\n\
uniform vec4 color;\n\
void main() {\n\
out_Color = color;\n\
}";

glUniform4f(glGetUniformLocation(cubeProgram,
"color"), 0.1f, 0.5f+0.5f*sin(currentTime),
1.f, 0.f);

2. Introduction to model lightning

Ambient

Exercise: draw again the cube, but
this time make the ambient light
change with currentTime

const char* cube_fragShader =
"#version 330\n\
out vec4 out_Color;\n\
uniform vec4 color;\n\
uniform vec4 ambient;\n\
void main() {\n\
vec3 rgb= color.rgb * ambient.rgb;\n\
out_Color = vec4(rgb, 1.0);\n\
}";

glUniform4f(glGetUniformLocation(cubeProgram,
"color"), .1f, 0.5f, .5f, 0.f);
glUniform4f(glGetUniformLocation(cubeProgram,
"ambient"), 0.4f + 0.2f*sin(currentTime),
0.4f+0.2f*sin(currentTime), 0.4f +
0.2f*sin(currentTime), 0.0f);Cube::drawCube(currentTime);

2. Introduction to model lightning

Ambient

Small improvement:

Consider the alpha only from the
colour

To improve on this model, we need
some theory of lightning.

However, first we need to make sure
we understand in and out variables

const char* cube_fragShader =
"#version 330\n\
out vec4 out_Color;\n\
uniform vec4 color;\n\
uniform vec4 ambient;\n\
void main() {\n\
vec3 rgb= min(color.rgb
*ambient.rgb,vec3(1.0));\n\
out_Color = vec4(rgb, 1.0);\n\
}";

(Input and output)

Small Exercise

1. Make the cube move
horizontally

2.Make it change color in world
coordinates:

-if xpos smaller than 0, red=0

-if xpos bigger than 1, red=1

-otherwise, red=xpos

3. Make the change depending on
screen coordinates

(Input and output)

Small Exercise

1. Make the cube move
horizontally

2.Make it change color in world
coordinates:

-if xpos smaller than 0, red=0

-if xpos bigger than 1, red=1

-otherwise, red=xpos

3. Make the change depending on
screen coordinates

const char* cube_vertShader =
"#version 330\n\
in vec3 in_Position;\n\
uniform mat4 mvpMat;\n\
uniform float time;\n\
out float xcolor;\n\
void main() {\n\
vec3 temp = in_Position;\n\
temp.x = temp.x + 4*sin(time);\n\
gl_Position = mvpMat * vec4(temp, 1.0);\n\
xcolor = min(temp.x, 1.0);\n\
xcolor = max(xcolor, 0.0);\n\
}";

//xcolor = min(gl_Position.x, 1.0);\n\
//xcolor = max(gl_Position.x, 0.0);\n\

glUniform4f(glGetUniformLocation(cubeProgram, "ambient"), 0.4f , 0.4f
, 0.4f , 0.0f);
glUniform1f(glGetUniformLocation(cubeProgram, "time"), currentTime);

const char* cube_fragShader =
"#version 330\n\
out vec4 out_Color;\n\
in float xcolor;\n\
uniform vec4 color;\n\
uniform vec4 ambient;\n\
void main() {\n\
vec3 rgb= min(color.rgb,vec3(1.0));\n\
rgb.r = xcolor;\n\
out_Color = vec4(rgb, 1.0);\n\
}";

(Input and output)

Small Exercise

1. Make the cube move
horizontally

2.Make it change color in world
coordinates:

-if xpos smaller than 0, red=0

-if xpos bigger than 1, red=1

-otherwise, red=xpos

3. Make the change depending
on screen coordinates

const char* cube_vertShader =
"#version 330\n\
in vec3 in_Position;\n\
uniform mat4 mvpMat;\n\
uniform float time;\n\
out float xcolor;\n\
void main() {\n\
vec3 temp = in_Position;\n\
temp.x = temp.x + 4*sin(time);\n\
gl_Position = mvpMat * vec4(temp, 1.0);\n\
//xcolor = min(temp.x, 1.0);\n\
xcolor = min(gl_Position.x,1.0);\n\
xcolor = max(xcolor, 0.0);\n\
}";

(Input and output)

Notice how certain variables
(gl_Position) work the same way,
but are declared by default

const char* cube_vertShader =
"#version 330\n\
in vec3 in_Position;\n\
uniform mat4 mvpMat;\n\
uniform float time;\n\
out float xcolor;\n\
void main() {\n\
vec3 temp = in_Position;\n\
temp.x = temp.x + 4*sin(time);\n\
gl_Position = mvpMat * vec4(temp, 1.0);\n\
xcolor = min(temp.x, 1.0);\n\
xcolor = max(xcolor.x, 0.0);\n\
}";

//xcolor = min(gl_Position.x, 1.0);\n\
//xcolor = max(xcolor.x, 0.0);\n\

glUniform4f(glGetUniformLocation(cubeProgram, "ambient"), 0.4f , 0.4f
, 0.4f , 0.0f);
glUniform1f(glGetUniformLocation(cubeProgram, "time"), currentTime);

const char* cube_fragShader =
"#version 330\n\
out vec4 out_Color;\n\
in float xcolor;\n\
uniform vec4 color;\n\
uniform vec4 ambient;\n\
void main() {\n\
vec3 rgb= min(color.rgb,vec3(1.0));\n\
rgb.r = xcolor;\n\
out_Color = vec4(rgb, 1.0);\n\
}";

3. Theory on Lightning

3.1 Why do we need shading?
• Objects have not a uniform color because the light‐material interactions cause

each point to have a different color or shade

• The final color will dependon:

• The light sources

• The material properties

• The location ofviewer

• The surface orientation

• Therefore, we need to understand and model how the light affects the color of
the objects in order to increase the reality of our graphics

• As we can see in the below example, it is not same draw an object with an
uniform color than an object in which the color depends on the light‐material
interaction

3.2 Visible Light
• Light is electromagnetic radiation within a certain portion of the

electromagnetic spectrum

• The word usually refers to visible light, which is visible to the human eye and is
responsible for the sense ofsight

• Each light source hasa characteristic spectrum

3.3 A simple model for the eye
• A light source emits photons which go straight forward until they strike a

surface and, then, photons are reflected, refracted and/or absorbed by the
surface based on itsmaterial properties

• The human eye is able to catch these photons, which stimulates the rods and
cones

• If there were no light sources, the objects would be dark and there would be
nothing visible

3.3 Light-material interactions
• An object surface can be covered by one or more different materials

• Light‐material interactions cause each point to have a different color or shade

• Light that strikes an object is partially absorbed and partially scattered
(reflected)

• The amount reflected determines the color and brightness of the object.
Thus, a surface appears red under white light because the red component
of the light is reflected and the rest is absorbed

• The reflected light is scattered in a manner that depends on the
smoothness and orientation of the surface

The light sources, the material properties, the location of viewer and the

surface orientation will condition the light‐material interaction and,

therefore, the finalcolor

3.3 Light-material interaction: absorption
• The color of a light is a combination of different intensities of red, green and

blue lights

• The RGB color of a surface represents how light is absorbed and reflected by
that surface

Magenta = red +

blue

3.3 Light-material interaction: reflection
• Reflection is the change in direction of a wave front at an interface between two

different media so that the wave front returns into the medium from which it
originated

• Reflection of light is either specular (mirror‐like) or diffuse (retaining the energy,
but losing the image) depending on the nature of the interface

The specular reflection meansthat

ray of lights are parallel bounced

due to the surface issmooth

The diffuse reflection means thatray

of lights are not parallel bounced due

to the surface isrough

3.4 Light-material interaction: refraction
• Refraction happens when the direction of a ray of light is changed at an

interface between two different transparent media with different density.
Therefore, the ray of light is NOT returned to the coming media

Snell law

3.5 Limits of the graphics pipeline

• The infinite scattering and absorption oflight will create the global effect, which
includes shades and multiple scattering from object to object

• Exist many techniques for approximating global effects based on simplifying the
reality

3.5 Limits of the graphics pipeline
• Although correct shading requires a global calculation involving all objects and

light sources, it is incompatible with pipeline model which shades each polygon
independently (local rendering)

• Considers only directillumination • Indirect light isconsidered

• Light is reflected multipletimes

3.5 Limits of the graphics pipeline

• General light sources are difficult to work with because
we must integrate light coming from all points on the source

• For this reason, we initially consider simple light sources

Same amount oflight

everywhere in scene A light source which is far

away

A light source

modeled with a

position and acolor Restrict light from

ideal point

3.5 Limits of the graphics pipeline
• Ray tracing is an approach different from the graphic pipeline for determining

the lighting andshading

• It follow raysof light from center of projection until they either are absorbed by
objects or gooff to infinity

• The main benefits is that it can handle global effects such as multiple reflections
and translucent objects. Therefore, it is slow and must have whole data base
available at all times

• This approach is not always applicable in real‐time computer graphics

3.6 Radiometry: Radiant power of visible light

• Radiometry is a set of techniques for measuring electromagnetic radiation,
including visible light

• The radiation or the radiant power of the visible light is measured as the
amount of energydue to the light flow per unit time (watts)

Energy of onephoton

Energy of a set of N photons

Wave length
Radiant power (Watts)

3.6 Radiometry: Radiance and Irradiance
• Irradiance (E): Radiant flux received by a surface per unitarea

• Radiance (L): Radiant flux emitted, reflected, transmitted by
a surface, per unit solid angle per unit projected area

• The discrete equations for modelling the Irradiance (L) and radiance (E) of a
single point of lightare

• Let’s suppose there is a single point of light source

• If angle=0 then cos(0) =1

• The radiant power received is 100% the radiant flux

• If angle=90 thencos(90)=0

• The radiant power is notreceived

Light source

E

L

3.6 Radiometry: Reflectance
• Reflectance is the amount of the flow from the emitted light that is bounded

• The total radiant power of the reflectance is the sum of all the irradiance of all
the source lights

• The radiant power of the reflectance depends on the angle between the light
source and the surface’s normal andthe Bidirectional Reflectance Distribution
Function (BRFD) of thesurface

BRFD

4. The Phong Reflection Model

4.1 Ideal vs real reflectors

Ideal diffuse and specular
reflection in ‘ideal’surfaces

•The diffuse reflectionreflects
equally in alldirections

•The specular reflectiononly
reflects in the mirrorangle

Real diffuse and specular
reflection in ‘real’surfaces

•The diffuse reflection doesn’treflect
equally in alldirections

•The specular reflection notonly
reflects in the mirrorangle

• The ray of lights bound and bound from one surface to other until the infinitive

• Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors). This
hinders the definition of the reflection model of the surface

4.1 Ideal vs real reflectors

non ideal surface

F1
F2

3F

P0

P
0

F1
F2

F3

P0

F1
F2

F3

P0

F1
F2

F3

P
0

F1

F

F2

3

P0

F1
F2

F3

Specular reflection

ideal surface

Diffuse reflection

4.2 The Phong reflection model
• The Phong reflection model (also called Phong illumination or Phong lighting) is

an empirical model of the local illumination of points on a surface

• It describes the way a surface reflects light as a combination of the diffuse
reflectionof rough surfaces with the specular reflection of shiny surfaces

• The model also includes an ambient term to account for the small amount of
light that is scattered about the entire scene.

4.2 The Phong reflection model
• The Phong reflection model is the result of three partial radiance:

• The diffuse reflection, where the reflection occurs to all

directions

• Thespecular reflection,where the reflection only occurs in

the mirror angle

• Theambient light,which represents the indirect light as a

constant

is the radiant power of the light source

kd,ks,kaare described as vectors that represents the impact in the RGB color

kd: the diffuse reflectioncoefficient
ks: the specular reflection coefficient

ka: the ambient reflection coefficient

n: the normalized surfacenormal

l: the normalized light directionvector

r: it is the mirror of l and it can be computed as 2(l∙n)n ‐ l

v: camera directionvector

d: distance from the light source to the surface’spoint

q: shininess coefficient
The angle betweenn and l MUST be between0º and 90º. Otherwise, it means that the light is

behind the material so it will not reflect anything.

4.2 The Phong reflection model
• The shininess coefficient determines the “shininess” of the material and it depends

on the angle between v and n

• For example:

• q values of between 100 and 200 correspond to metals

• q values between 5 and 10 give surface that look like plastic

Reflection

Angle between v andn

3. The Phong reflection model
• The total reflectance radiance is the addition of the diffuse, specular and

ambient radiance

• It also can be described using a light source Liwith an indirect light La

Ambient Diffuse Specular Phong reflectance

3. The Phong reflection model
• The specular term in the Phong model is problematic because it requires the

calculation of a new reflection vector and view vector for each vertex

• Blinn suggested an approximation using the halfway vector that is more efficient

• h is normalized vector halfway between l and v

Resources

• [Kessenich] Kessenich et al. OpenGL Programming Guide. Chapter 7.
Light and Shadow

• https://learnopengl.com/Lighting/Basic-Lighting

• http://www.opengl-tutorial.org/beginners-tutorials/tutorial-7-model-
loading/

• https://en.wikipedia.org/wiki/Phong_reflection_model

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-7-model-loading/

