
Animation Foundations
13. Constraints for Inverse Kinematics

Lessons learnt from Direct Kinematics

When introducing Direct_kinematics,
we did the following:

1. Calculate direct kinematics

2. Start to add constraints (angles)

Check:

08.Direct_Kinematics.pdf

08.Direct_Kinematics_exercises-
unfinished

Reminder

Lessons learnt from Inverse Kinematics

Now, we have:

1. An RL method that uses the
function that calculates
direct_kinematics: the goal of
gradient descent is to minimize the
direct_kinematics function

2. Many articulated entities have
different kinds of constraints,

But:

• We have not explored enough how to
introduce constraints

• We do not know how to combine
constraints with

Constraints for Inverse Kinematics

Motivation: when using inverse
kinematics methods we may need
to:

• Constrain the angles of rotation of
a joint (remember the robot joints)

• Constrain the plane of rotation of a
joint (remember the robot joints)

• Introduce more general constraints
(remember the example concerned
with keeping the mass center
within certain boundaries)

Constraints in IK. Exercise 1

Import package Constraints4IK.unitypackage

Load scene mirrorMovement

a) Complete script MirrorMovement.cs in
order the angle of rotation is between the
minimum and maximum angle variables

b) Before the previous calculations, cancel the
twist of the affected bone

c) Verify whether canceling the twist changes
the behaviour, and why (it will depend on
how you implemented a. and b.)

Note: We addressed a simpler version of this
when introducing Direct Kinematics

Constraints in IK. Exercise 2

In scene mirrorMovement

a) Complete script
MirrorMovement.cs in
introducing a plane constraint,
i.e., that the red joints are
always on the surface of the
plane.

b) Verify that you can combine
this constraint with the angle
constraint.

Constraints in IK. Towards global constraints
We can also explore more abstract constraints.
For this, please notice:

1. When introducing the Jacobian, we
discussed more global constraints could be
introduced in the calculation of the
Derivative.

2. When we programmed the Gradient
descent method, we noticed that the
distance was treated as an Error function
(see Start() in InverseKinematics.cs)

3. In the right, a gif of a more abstract
constraint. This is implemented with an
error term focused on minimizing the angle
between the object and the end-effector,
as well as the torsion

Note: the gradient descent project was adapted
from a tutorial by Alan Zucconi. See explanation
on implementation here:
https://www.alanzucconi.com/2017/04/12/tent
acles

https://www.alanzucconi.com/2017/04/12/tentacles/
https://www.alanzucconi.com/2017/04/12/tentacles/

Constraints in IK. Exercise 3.

Open again the Gradient Descent
package. In the InverseKinematics
script, add a new function that you
will use as an error function. Using it
should:

a) Minimize distance to target, (just
as function DistanceFromTarget)

b) Minimize the angle differences
between joint1, joint2, and joint3
(torsion spread along the 3
joints)

Constraints in IK. Exercise 4.

In exercise 3, add a slider that allows
controling the importance of each of
these factors. Then:

a) Write a new error function
where: Each of the two previous
factors a. and b. gives a measure
that is between 0 and 1

b) Do a weighted sum of the
factors, and check if the
dynamics behaviour of the robot
changes.

Constraints in IK. Exercise 5.

a. Calculate the center of mass
(CoF) of the robot, assuming the
different joints weigh the same,
and that the weight of each joint
is equally distributed

b. Write a new error function that
minimizes the distance to target,
while keeping the CoF as close as
possible from Joint0

