
Animation Foundations
12. Inverse Kinematics. FABRIK
Dr Joan Llobera – joanllobera@enti.cat

mailto:joanllobera@enti.cat

Inverse kinematics. The intro

Idea!

We can define an optimization function to
minimize a distance depending on a certain
number of angles

Min function(distance(angles) ,angles) = ?

But how?

Reminder

Inverse kinematics. The methods

3 methods:

• Gradient Descent (GD)

• Cyclic Coordinate Descent (CCD)

• Forward and Backward Recursive
Inverse Kinematic (FABRIK)

Reminder

CCD

Exercise:

Implement IK based on CCD

CCD

• Advantages
• Fast computation

of one iteration

• Easy to
implement

• Handling of joint
limits

• Drawbacks
• Slow convergence

• Bad distribution of the adaptation

• Unnatural posture

 First joints are more modified than the following ones!

CCD

• First solution: use damping
• Threshold on the variation of the joint parameters
• Minimizes the adaptation of each joint
• But increases the number of iterations

• More homogeneous adaptation
 Bigger computation cost

• CCD is not suitable for postural adaptation of humanoids
• Our goal

• Find natural postures
• Computation time compatible with interactive animation of hundreds of characters

Comparison of analytic and iterative IK

• Analytic is best suited for simple case like isolated arm, leg, etc…

• Iterative is more general but requires multiple steps to converge
towards the solution
• Due to the non-linearity of the problem

• If big steps are used, it becomes unstable

• Or due to solving only for one DOF at a time (CCD)

7

Decomposition aligned with the z axis

Simpler algorithm:

Given rotation 𝑞𝑟
𝑞𝑟 = 𝑞𝑡𝑤𝑖𝑠𝑡𝑞𝑠𝑤𝑖𝑛𝑔

Algorithm:

𝑞𝑡𝑤𝑖𝑠𝑡 = normalize(Quaternion(0, 0, qr.z, qr.w);

𝑞𝑠𝑤𝑖𝑛𝑔 = qr * conjugate(qt);

Reminder

Constraints. Twist

In the previous project, add the script constraintsTwist (found in
intranet).

1. Use and complete that script to cancel the twist in the mirror joint

2. Extend the script so it has a minimum and a maximum angle

3. Apply the rotation limit script to the humanoid wrist (.fbx found in
intranet)

Rotate a vector. Reminder

This does the following:

public static Vector3 operator *(Quaternion quat, Vector3 vec){

float num = quat.x * 2f; float num2 = quat.y * 2f; float num3 = quat.z * 2f;

float num4 = quat.x * num; float num5 = quat.y * num2; float num6 = quat.z * num3;

float num7 = quat.x * num2; float num8 = quat.x * num3; float num9 = quat.y * num3;

float num10 = quat.w * num; float num11 = quat.w * num2; float num12 = quat.w *num3;

Vector3 result;

result.x = (1f - (num5 + num6)) * vec.x + (num7 - num12) * vec.y + (num8 + num11) * vec.z;

result.y = (num7 + num12) * vec.x + (1f - (num4 + num6)) * vec.y + (num9 - num10) * vec.z;

result.z = (num8 - num11) * vec.x + (num9 + num10) * vec.y + (1f - (num4 + num5)) * vec.z;

return result;

}

https://answers.unity.com/questions/372371/multiply-quaternion-by-vector3-how-is-done.html

Intro.

Rotating a vector p by a quaternion q is:
𝑝′ = 𝑞𝑝𝑞∗

However,in Unity, given
Vector3 p1;
Quaternion q;
Vector3 p2;

We can write:
p2= q*p1;

(vector3) = (Quaternion) * (Vector3)

Inverse kinematics. The methods

3 methods:

• Gradient Descent (GD)

• Cyclic Coordinate Descent (CCD)

• Forward and Backward Recursive
Inverse Kinematic (FABRIK)

Fabrik
The basic algorithm

Benefits

Benefits (2)

• It converges fast (see previous
slide)

• It works well with multiple end-
effectors (think of the algorithm,
a sub-chain can be analysed
independently)

• Many good resources online (see
final slide)

Drawbacks

• FABRIK does NOT preserve the chain integrity

• Therefore, constraints in FABRIK are tricky

(quite more tricky than in CCD!)

FABRIK. See also

• Blog description:

https://developer.roblox.com/articles/Inverse-Kinematics-for-
Animation#FABRIK

• Video (25 minutes)

https://www.youtube.com/watch?time_continue=2&v=UNoX65PRe
hA

• Web from the author (very detailed!), with links to
implementations

http://www.andreasaristidou.com/FABRIK.html

https://developer.roblox.com/articles/Inverse-Kinematics-for-Animation#FABRIK
https://www.youtube.com/watch?time_continue=2&v=UNoX65PRehA
http://www.andreasaristidou.com/FABRIK.html

