
Computer Graphics
07. Setup a GIT repo for a C# Unity3D project
Dr Joan Llobera – joanllobera@enti.cat

• Git flow: a way to organize your
commits

• Naming Conventions

• Scene Conventions

• Repository Configuration

Git flow

It’s a way to organize your commits.

It was proposed by Vincent Driesen in
2010

https://nvie.com/posts/a-successful-git-
branching-model/

Git flow

It’s a way to organize your commits.

It was proposed by Vincent Driesen in
2010

https://nvie.com/posts/a-successful-git-
branching-model/

Merge! Some precautions to consider

• Merging a feature that has been completed in develop can be done
directly
• ALL commits in develop should involve a working project (no errors)

• Merging a release from develop (or from release branch) to master
• Needs to go with a TAG

• Need to be committed as a merge request, for your partner to verify that the
solution works, and accept the merge request

Important consideration when merging

Hotfixes

Branching conventions

• All commits in develop compile

• Release in master is done
through a Merge Request.
Previous to acceptance, the
entire project is tested

• Release is tagged

• Readme is clear, easy to read

• Hotfix branch only used if
necessary

• Release branch unnecessary (we
use Develop)

• We do not demand back-
compatibility

How it looks on sourcetree

Naming conventions

In C#
• Classes, Functions and Namespaces use PascalCase

MyFunctionName

• Variables and input fields use camelCase
myVariableName

• Class fields, private ones, start with underscore _myVariableName

Example naming conventions:
https://www.dofactory.com/reference/csharp-coding-standards

C# Difference between a field and a property

using UnityEngine;//only for debug purposes:

public class MyClass {

 public int MyField1;

 int _myField2;

 public int MyProperty2 {

 get { return _myField2; }

 set {

 if (value > 0)

 _myField2 = value;

 else

 Debug.LogError("MyField2 cannot be negative!");

 }

 }

}

What are the differences
between a field and a
property?

When should we use each?

C# Difference between a field and a property

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class MyComponent : MonoBehaviour {

 public int MyField1;

 [SerializeField]

 int _myField2;

 public int MyProperty2{ set { _myField2 = value; } get { return _myField2; } }

// Use this for initialization

void Start () {}

// Update is called once per frame

void Update () {}

}

What are the differences
between a field and a
property?

When should we use each?

C# Difference between class and struct

A class is a reference type. When an
object of the class is created, the
variable to which the object is
assigned holds only a reference to
that memory. When the object
reference is assigned to a new
variable, the new variable refers to
the original object. Changes made
through one variable are reflected
in the other variable because they
both refer to the same data.

A struct is a value type. When a
struct is created, the variable to
which the struct is assigned
holds the struct's actual data.
When the struct is assigned to a
new variable, it is copied. The
new variable and the original
variable therefore contain two
separate copies of the same
data. Changes made to one copy
do not affect the other copy.

C# Other useful keywords

static

const

namespace

using

internal (very useful)

partial (avoid)

Unity3D Scene Game Object Conventions

• Respect the hierarchy

• If needed (for example, a manager), use underscore to highlight an
element

Project Scene Game Object Conventions

• Acceleration and Forces are shown in Red

• Linear and angular velocity in Green

• Movement is shown in Blue

General Project Repository Conventions

• Commits in gitlab

• More info: https://docs.gitlab.com/ee/user/project/wiki/

https://docs.gitlab.com/ee/user/project/wiki/
https://docs.gitlab.com/ee/user/project/wiki/

Specific Unity3D Repository conventions
We want to use an external git manager

We want code repositories to be clean, and easy to follow

0. We want a repository properly configured

https://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html

 -make sure commits are in the right email, with name and surname

1. We want clean readme.md, easy to follow project

 For markdown edition, you can use, for example:

 https://pandao.github.io/editor.md/en.html

 Note: keywords like [TOC] do not work in

2. We want a .gitignore file that works properly

https://docs.unity3d.com/2017.2/Documentation/Manual/ExternalVersionControlSystemSupport.html

 .meta files need to be commited

 Assets, UnityPackageManager and ProjectSettings directory are versioned.

Always check a release works directly when downloading the repository

https://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html
https://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html
https://docs.unity3d.com/2017.2/Documentation/Manual/ExternalVersionControlSystemSupport.html

https://docs.unity3d.com/Manual/ExecutionOrder.html

http://www.lucedigitale.com/blog/unity3d-game-engine-
script-lifecycle-flowchart/

