
Animation Foundations
05. Introduction to procedural animations

 + Exercises on rotations

Kinds of animations

• Physically-based Animations
• Tissue

• Water

• Smoke

• …

• Ragdoll physics
• Ragdolls

• Physics-based character animation

• IK

Examples

• Ragdoll example in unity

• Videogames
• A Bud’s life

• Gang Beasts

Summary of previous courses on rotations:

• Rotations in 2D
• Angle

• Matrix

• Rotations in 3D
• Euler Angles

• Yaw-Pitch-Roll

• Axis Angle

• 3x3 Matrix

Today, we use the stuff that has imagination:

• Reminder rotations in 2D
• Angle
• Matrix
• Complex Numbers

• Introduce New method for
Rotations in 3D
• Euler Angles
• Yaw-Pitch-Roll
• Axis Angle
• 3x3 Matrix
• Quaternions

Rotations

• With complex numbers

• With quaternions

We want to have:

• Compact representation

• Simple calculation

• Robust composition

• Robust interpolation

Exercise 1

Find the offset angles between
target1 and tracker.
Then make target1 align with
tracker.

• Make it with object “tracker” and

target1 “rectangle1”
• Use angle axis to find explicitly

the angle offsets.

Exercise 2

Make target1 align with tracker.
• Use one ligne of code (use the quaternion

that corresponds to the offset rotation)

Then, make it align with tracker, but slowly in
time.
• Use method Quaternion.AngleAxis
• Use method Transform.Rotate

Exercise 3

Make target1 follow tracker while
keeping the offset.

1. Make it with object “tracker”
and target1 “rectangle1”

Use exercise 2 and apply a
quaternion transf. to it

2. Imagine “tracker” is an HMD
tracker, and apply it also to the
robot’s head

3. Apply it to the robot’s head and
to the virtual camera

Exercise 4

Make target2 follow the
transformations of target1, but in
such a way that it is aligned with
the tracker

How can you find the right offset?

Exercise 5

Write your own Quaternion class
that:

• Always keeps values normal

• Can multiply quaternions

• Can invert quaternions

• Can convert from axis angle

• Can convert to axis angle

• Optionally, gives a warning if it is
rotating more than 180º

• Check that exercise 4 still Works
when using it

To design the class, imagine that
in the future you might want to
encapsulate it in a .dll

• Base it solely on the Mathf
library

• Make it independent from
gameObject

