
Computer Graphics
03. Rotations in 3D (part 2)
Dr Joan Llobera – joanllobera@enti.cat

Summary last class on rotations:

• Rotations in 2D
• Angle

• Matrix

• Rotations in 3D
• Euler Angles

• Yaw-Pitch-Roll

• Axis Angle

• 3x3 Matrix

Today

• Reminder rotations in 2D
• Angle
• Matrix
• Complex Numbers

• Introduce New method for
Rotations in 3D

• Euler Angles
• Yaw-Pitch-Roll
• Axis Angle
• 3x3 Matrix
• Quaternions

Rotations

• With complex numbers

• With quaternions

We want to have:

• Compact representation

• Simple calculation

• Robust composition

• Robust interpolation

Reminder on Complex Numbers

Definition:
𝑧 = 𝑎 + 𝑏𝑖

with
𝑖2 = −1

• Complex numbers are a good
compact representation of
movements on a plane (2
Values)

• If normalized (), can use
these to represent 2D rotation

Im

Re

q

(cos q, sin q)

Unit circle on complex plane

Euler Formula
(proof from Taylor Expansions)

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

Polar form of a complex
number:

𝑎 + 𝑏𝑖 = 𝐴𝑒𝑖𝜃

You may have seen this:

It falls out from:

Euler Identity

Who came up with this?

Roger Cotes in 1714
(sculpture by
Scheemakers)

Euler in 1748
(painting by
Handmann)

Interpretation on Plane

• Caspar Wessel (1799)

• Jean Robert Argand
(1806)

• Made “popular”
around 1814

Operations

Conjugate:

(a+bi)* = a -bi

Addition:

(a+bi)+(c+di) = (a+c)+ (b+d)i

Product:

(a+bi) (c+di)= (ac - bd) + (ad +bc)i

𝐴𝑒𝑖𝜃 ∗ 𝐵𝑒𝑖𝜑 = 𝐴𝐵𝑒𝑖(𝜃+𝜑)

Conclusion

A multiplication by a complex number of modulus 1 can be seen, in
geometrical terms, as a rotation on the plane

Outline

Can we achieve simple and
efficient maths for all three?

• Concatenation
• Interpolation
• Rotation

Outline:
• Complex numbers

(good rotations in 2D)
• Quaternions

(good rotations in 3D)
And how to go from there to
usual space

In addition:
• Review on dot and cross product

Rotations

• With complex numbers (in 2D)

• With quaternions (in 3D)

We want to have:

• Compact representation

• Simple calculation

• Robust composition

• Robust interpolation

Created as extension to complex numbers

becomes

Can represent as coordinates

Or scalar/vector pair

What is a Quaternion?

Discovery

October 16, 1843

W. R. Hamilton

1222  ijkkji

Definition

jikki

ikjjk

kjiij

kji

qqkqjqiqqq











1222

03210



i

j k

3 interlinked imaginary
values

Operations

• Addition

       kqpjqpiqpqpqp

kqjqiqqq

kpjpippp

33221100

3210

3210







Operations

• Multiplication

(𝑝𝑜 + 𝑝1𝑖 + 𝑝2𝑗 + 𝑝3𝑘)(𝑞𝑜 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘)
Remarks:
• Compare with complex

numbers
(a+bi)(c+di)= (ac - bd) + (ad +bc)i

Properties:
• Associative
• Non-commutative

q1wq2w - q1xq2x - q1yq2y - q1zq2z) +

(q1wq2x + q1xq2w - q1yq2z + q1zq2y)i +

(q1wq2y + q1xq2y + q1yq2w – q1zq2x)j +

(q1wq2z - q1xq2y + q1yq2x + q1zq20)k

q1q2=

Operations

• Conjugate

• Modulus (length)

• Identity quaternion

(1,0,0,0)

Remarks:

• Idem to complex (but with 3
imaginary numbers)

qqq


 0

*   ***
pqpq 

2

3

2

2

2

1

2

0

* qqqqqqq 

Exercise 1

Given:

𝑞1 = (2
2
,0,0,

2
2
)

𝑞2 = (2
2
,0,

2
2
,0)

Calculate the products
𝑞1𝑞2

𝑞2𝑞1

Applications of Quaternions

Used to represent rotations and
orientations of objects in three-
dimensional space in:

• Computer graphics

• Control theory

• Signal processing

• Attitude controls

• Physics

• Orbital mechanics

• Quantum Computing

What is a Rotation Quaternion?

Normalized quaternion
is a rotation representation

• If not unitary, it is not a rotation
(scaling)

• Normalizing avoids errors due to
floating point rounding

• To normalize, multiply by

Why 4 values?

One way to think of it:

2D rotation ->
One degree of freedom

Normalized complex number ->
One degree of freedom

3D rotation ->
Three degrees of freedom

Normalized quaternion ->
Three degrees of freedom

How does a Quaternion relate to a Rotation?

Normalized quat (w, x, y, z)

w represents angle of rotation q

w = cos(q/2)

x, y, z form normalized rotation
axis r

(x y z) = v = sin(q/2)r

It’s a modified axis-angle!

Quaternion as rotations

Have vector v1, want to rotate to v2

Need rotation vector r, angle q

Plug into previous formula

v1

v

2

r

q

Common trick – originally from
Game Gems 1 (Stan Melax)

Use trig identities to avoid acos
• Normalize v1, v2

Build quat

• More stable when v1, v2 near parallel

Exercise 1 (revisited)

We did:

Given:

𝑞1 = (2
2 ,0,0,

2
2)

𝑞2 = (2
2 ,0,

2
2 ,0)

Calculate the products
𝑞1𝑞2

𝑞2𝑞1

How do you interpret these in
terms of rotations?

Example

To rotate 90°around z-axis:

Exercise 1 (solved in RStudio)

rm(list = ls())

install.packages("rotations")

library(ggplot2);

library(rotations);

Q1 <- as.Q4(c(sqrt(2)/2,0,0,sqrt(2)/2))

Q2 <- as.Q4(c(sqrt(2)/2,0,sqrt(2)/2 ,0))

##add rotations means multiply quaternions

Q3 = Q1 + Q2 #this is a quaternion
multiplication!

Q4 =Q2 + Q1

> mis.angle(Q3); mis.angle(Q4)

[1] 2.094395

[1] 2.094395

> mis.axis(Q3); mis.axis(Q4)

[,1] [,2] [,3]

[1,] 0.5773503 0.5773503 0.5773503

[,1] [,2] [,3]

[1,] -0.5773503 0.5773503 0.5773503

>sqrt(sum(Q4^2))

[1] 1

Q3 corresponds to rotation of 120º
around axis (1,1,1)
Q4 corresponds to rotation of 120º
around axis (-1,1,1)

How far did we get?

Quaternions for 3D rotations are:

• Compact representation

• Simple calculation

• Robust composition

• Robust interpolation ?
We need some more algebra

Identity and Inverse

Identity quaternion is (1, 0, 0, 0)
• applies no rotation

• remains at reference orientation

q-1 is inverse
q . q-1 gives identity quaternion

What is q-1 ?

What is the inverse?

(w, v)-1 = (cos(q/2), sin(q/2) . r) -1

Only true if q is normalized
• i.e. r is a unit vector

Otherwise scale by

Inverse is same axis but opposite
angle!

More formally:

𝑞−1 =
𝑞∗

𝑞𝑞∗

If 𝑞 = 1
q −1 = 𝑞∗

Be careful!

• do not confuse −𝑞 with 𝑞∗

• If 𝑞 = 1, 𝑞 and −𝑞 represent the
same rotation (or almost)

How to rotate a vector with a quaternion?

Main problem:
𝑝 𝜖 ℝ3

But:
𝑞 𝜖 ℝ4

How do we deal with this?

Practical formula. Like this:

• Treat p as quaternion (0, p)

• Rotation of p by q is p’= q p q-1

• Result in the form (0, p’)

How to rotate a vector with a quaternion?

Why does this formula work?
Proof:

https://en.wikipedia.org/wiki/Quate
rnions_and_spatial_rotation#Proof_
of_the_quaternion_rotation_identit
y

Intuition:
• First multiply rotates halfway and

into 4th dimension

• Second multiply rotates rest of the
way, back into 3rd

How to rotate a vector with a quaternion?

Combine with composition?
Assume: 𝑞 = 𝑞2𝑞1, 𝑝′ = 𝑞𝑝𝑞−1

Then:
(𝑞2𝑞1)𝑝(𝑞2𝑞1)

−1

• Given the fact that q has
module 1: 𝑞−1= 𝑞∗

• In general: 𝑞1
∗𝑞2

∗= (𝑞2𝑞1)
∗

The result is:
𝑝′ = 𝑞2(𝑞1𝑝𝑞1

−1)𝑞2
−1

Conclusion:
• Rotation composition also applies to

vectors

Be careful:
• To rotate apply multiplications from

right to left

Doubt: Why is the angle half?

Several reasons. Here are 2.

The actual rotation is defined by x’= q x q*

You get a θ/2 from q on the left, and
another θ/2 from q* on the right, which adds up
to a θ

If instead of

cos
θ

2
+ sin

θ

2
𝑢

it were
cosθ + sinθ𝑢

then rotation of π about any axis would give
you the same result

Video tutorial

Useful to review what are quaternions
and how they relate to rotations

https://www.youtube.com/watch?v=d4EgbgTm0Bg

https://www.youtube.com/watch?v=d4EgbgTm0Bg

Interpolation

• q and –q rotate vector to same
place (almost)

• Why almost
Not in the same way

Important for interpolation

r

-r

v

w

q
2pq

Linear Interpolation?

• Familiar formula
(1-t) p + t q

• Some trouble
• Cuts across sphere
• Moves faster in the middle
• Resulting quaternions aren't

normalized

• Vector3.lerp?
Will not work

• Vector3.lerp + normalization?
Will not give uniform movement

Spherical Linear Interpolation (Slerp)

• There is a (kind of) nice formula
for slerp:

If p,q are unit quaternions, and
α is the angle between them

But:

• Lots of rounding error

• Potential instabilities
(divide by 0)

Spherical Linear Interpolation (faster slerp)

Idea: correct t in Lerp to have speed
close to Slerp (From Jon Blow’s
column, Game Developer, March
2002)

• Use simple spline to modify t
(adjust speed)

• Near to lerp speed, close to slerp
precision

float f = 1.0f -
0.7878088f*cosAlpha;

float k = 0.5069269f;

f *= f;

k *= f;

float b = 2*k;

float c = -3*k;

float d = 1 + k;

t = t*(b*t + c) + d;

Spherical Linear Interpolation
(Conclusion)
• If small steps (or mocap):

Lerp + normalize is good enough

• If bigger interpolation:
Fast Slerp

Be careful!

• If dot product of 2 quaternions
is negative (cos(α)<0), it
means:

α > 180

You are interpolating the long
way

You want to take –p instead of p
to interpolate the short way

Quaternion as rotations

Have vector v1, want to rotate to v2

Need rotation vector r, angle q

Plug into previous formula

v1

v

2

r

q

Common trick – originally from
Game Gems 1 (Stan Melax)

Use trig identities to avoid acos
• Normalize v1, v2

Build quat

• More stable when v1, v2 near parallel

How far did we get? (revisited)

Quaternions for 3D rotations are:

• Compact representation

• Simple calculation

• Robust composition

• Robust interpolation

Implementation Advice

If you only use quaternions only
for rotations:

• Normalize to reduce floating
point errors

• Use tricks to avoid functions
such as arccos and arctan

• Check collinearity (dot prod = 0)
before performing cross prod
(infinite)

Many Benefits

• Avoids Gimbal Lock

• Simpler algorithms to combine
successive rotations (compared
to using rotation matrices)

• Easier to normalize than rotation
matrices

• Interpolation is feasible

• Mathematically stable – suitable
for statistics

Conclusions

• Quaternions are good

• Quaternions are nice

• Quaternions are precise

• You should study and master
quaternion operations

• You should implement the use of
quaternions for rotations

Next weeks

• Direct kinematics
(with quaternions)

• Direct Movement interpolation
(with quaternions)

• Inverse Kinematics principles
(with quaternions)

• IK algo 1 (CCD)
(with quaternions)

• IK algo 2 (gradient)
(with quaternions)

• Constraints in IK
(with quaternions)

Online References Used

Jim Van Hearth, from GDC 2009

https://www.essentialmath.com/tutorial.htm

Mathias Sunardi 2006

http://studylib.net/doc/9456410/quaternions

https://www.docsity.com/en/animation-lecture-slides-computer-
graphics-and-animation-2/35739/

Pictures also from wikipedia

